Gentian violet inhibits MDA-MB-231 human breast cancer cell proliferation, and reverses the stimulation of osteoclastogenesis and suppression of osteoblast activity induced by cancer cells.
نویسندگان
چکیده
Gentian violet (GV) is a cationic triphenylmethane dye, with potent antifungal and antibacterial activity. We recently reported that in vitro GV suppresses the differentiation of bone resorbing osteoclasts while stimulating the differentiation and activity of bone forming osteoblasts. Breast cancer is highly metastatic to bone and drives bone turnover that further promotes cancer engraftment and expansion, the so-called vicious cycle. In humans, breast cancer metastases cause osteolytic lesions and skeletal damage that leads to bone fractures, an additional source of patient morbidity. The MDA-MB-231 human breast cancer cell line is a commonly used model of human breast cancer that when injected into mice metastasizes to bone causing osteolytic lesions by promoting osteoclastic bone resorption and/or suppressing osteoblastic bone formation. In the present study, we investigated the direct action of GV on MDA-MB-231 proliferation, and the capacity of GV to reverse the negative impact of MDA-MB-231 cells on osteoclast and osteoblast differentiation. Our data reveal for the first time that GV suppresses proliferation, and induces apoptosis, of MDA-MB-231 cells. We further demonstrated the capacity of GV to reverse the pro-osteoclastogenic and anti-osteoblastic activities of MDA-MB-231 cells in vitro. These data suggest that GV has important applications in the treatment of breast cancer through multiple actions including direct suppression of cancer cell proliferation, breaking the vicious cycle between cancer and bone, and alleviating the skeletal defects induced by bone metastasis.
منابع مشابه
Inhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)
Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...
متن کاملCombination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells
Objective(s): Breast cancer remains a global challenge, and further chemopreventive therapies are still immediately required. Emerging evidence has revealed the potent anti-cancer effects of biguanides, Metformin (MET) and phenformin (PHE). Thus, to explore an efficient chemopreventive strategy for breast cancer, the antiproliferative effects of the combination of MET and PHE against breast can...
متن کاملEthanolic Extract of Propolis from Kerman Area Triggers Apoptosis and Arrests Cell Cycle in Three Human Breast Cancer Cell Lines MDA-MB-231, SKBR and MCF-7
Background: Cancer is one of the major health problems worldwide and natural resources are being explored to develop anticancer drugs with fewer side effects. Iranian propolis contains components including flavonoids and polyphenols and has various medicinal properties. The aim of this study was to investigate the effect of Ethanolic Extract of Sirch Propolis (EESP) on three br...
متن کاملTranscriptional effects of Organochlorine o,p′-DDT and its Metabolite p,p′-DDE in Transfected MDA-MB 231 and MCF-7 Breast Cancer Cell Lines
Background: The organochlorine DDT has estrogenic activity but the mechanism underlying the estrogenic activity of this pesticide remains unclear. In the present investigation here, we studied the transcriptional effects of a synthetic organochlorine pesticide o,p’-DDT [1.1.1.-trichloro-2-(o-chlorophenyl)-2-p-chloriphenyl ethane] and its metabolite p,p'-DDE (2-2-bis(4/chlorophenyl)-1-1-di...
متن کاملThe flavonoid p-hydroxycinnamic acid mediates anticancer effects on MDA-MB-231 human breast cancer cells in vitro: Implications for suppression of bone metastases.
Tumor invasion into bone tissues is associated with osteoclast and osteoblast recruitment, resulting in the liberation of growth factors from the bone matrix, which can feed back to enhance tumor growth resulting in the vicious cycle of bone metastasis. Activated nuclear factor-κB (NF-κB) in breast cancer cells has been shown to play a crucial role in the osteolytic bone metastasis of breast ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology reports
دوره 34 4 شماره
صفحات -
تاریخ انتشار 2015